1、机器视觉是人工智能重要的前沿技术
机器视觉是人工智能行业的重要前沿分支。机器视觉通过模拟人类视觉系统,赋予机器“看”和“认知”的能力,是机器认识世界的基础。机器视觉利用成像系统代替视觉器官作为输入手段,利用视觉控制系统代替大脑皮层和大脑的剩余部分完成对视觉图像的处理和解释,让机器人自动完成对外部世界的视觉信息的探测,做出相应判断并采取行动,实现更复杂的指挥决策和自主行动。作为人工智能前沿的领域之一,视觉类技术是人工智能企业的布局重点,具有较大的技术分布。
机器视觉在智能制造领域应用广泛,按功能主要可分为四大类:识别、测量、定位和检测。识别功能指甄别目标物体的物理特征,包括外形、颜色、字符、条码等,其准确度和识别速度是衡量的重要指标;测量功能指把获取的图像像素信息标定成常用的度量衡单位,然后在图像中精确地计算出目标物体的几何尺寸,主要应用于高精度及复杂形态测量;定位功能指获取目标物体的坐标和角度信息,自动判断物体位置,多用于全自动装备和生产;检测功能指对目标物体进行外观检测,判断产品装配是否完整和外观是否存在缺陷。
2、 机器视觉基本架构
机器视觉(Machine Vision)是指通过光学装置和非接触传感器自动接收并处理真实物体的图像,分析后获取所需信息或用于控制机器运动的装置。通俗地说,机器视觉就是用机器代替人眼。机器视觉模拟眼睛进行图像采集,经过图像识别和处理提取信息,最终通过执行装置完成操作。
五大模块构筑机器视觉系统:按照信号的流动顺序,机器视觉系统主要包括光学成像、图像传感器、图像处理、IO 和显示等五大模块。光学成像模块设计合理的光源和光路,通过镜头将物方空间信息投影到像方,从而获取目标物体的物理息;图像传感器模块负责信息的光电信号转换,目前主流的图像传感器分为CCD 与CMOS 两类;图像处理模块基于以CPU 为中心的电路系统或信息处理芯片,搭配完整的图像处理方案和数据算法库,提取信息的关键参数;IO 模块输出机器视觉系统的结果和数据;显示模块方便用户直观监测系统的运行过程,实现图像的可视化。
相对于人类视觉而言,机器视觉在量化程度、灰度分辨力、空间分辨力和观测速度等方面存在显著优势。其利用相机、镜头、光源和光源控制系统采集目标物体数据,借助视觉控制系统、智能视觉软件和数据算法库进行图形分析和处理,软硬系统相辅相成,为下游自动化、智能化制造行业赋予视觉能力。随着深度学习、3D 视觉技术、高精度成像技术和机器视觉互联互通技术的发展,机器视觉性能优势进一步提升,应用领域也向多个维度延伸。
3、 机器视觉发展历程
机器视觉起源于上世纪50 年代,Gilson 提出了“光流”这一概念,并基于相关统计模型发展了逐像素的计算模式,标志着2D 影像统计模式的发展。1960 年,美国学者Roberts 提出了从2D 图像中提取三维结构的观点,引发了MIT 人工智能实验室及其它机构对机器视觉的关注,并标志着三维机器视觉研究的开始。
70 年代中期,MIT 人工智能实验室正式开设“机器视觉”课程,研究人员开始大力进行“物体与视觉”相关课题的研究。1978 年,David Marr 开创了“自下而上”的通过计算机视觉捕捉物体形象的方法,该方法以2D的轮廓素描为起点,逐步完成3D 形象的捕捉,这一方法的提出标志着机器视觉研究的重大突破。
80 年代开始,机器视觉掀起了全球性的研究热潮,方法理论迭代更新,OCR 和智能摄像头等均在这一阶段问世,并逐步引发了机器视觉相关技术更为广泛的传播与应用。
90 年代初,视觉公司成立,并开发出一代图像处理产品。而后,机器视觉相关技术被不断地投入到生产制造过程中,使得机器视觉领域迅速扩张,上百家企业开始大量销售机器视觉系统,完整的机器视觉产业逐渐形成。(来源:机器人在线)